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General remarks

» cltations are becoming more important
than publications
» Jjournal paper #journal paper



How to get cited?

» Current content (references)
» Clear description of the idea
» Verification of results

» Wording of the title

» Abstract
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Humans are relatively unreliable element in control
systems

Humans are capable not only of solving many scientific problems, but also in
the process they are making mistakes. For example, even very good students
are not able to solve long problems requiring complex calculations without
making errors in the process

In the early stage of development of VLSI chips, required mask was manually
cut on a foil and when the number of transistors in the circuits was larger than
50, then chances of successful production of a chip was very slim.

Also, with usage of computers humans were the weakest link in the chip
design process where many different software were used. For example, when
humans were required to manually enter data obtained from one software to
another software then again errors were generated.

Conclusion: We should try to replace humans in
control systems if possible



Methods of artificial / computational intelligences are
possibly best candidates to replace humans

What is the difference between artificial intelligence and
computational intelligence?

The goal of artificial intelligence is to be
undistinguishable form humans.

Computational intelligence is trying to solve problems
better than humans



2=0 b B0 P Dl = T

= = s D = Dl T
Lk e 58 o O B R i B
= =l D = D T
R 8 1 ) B S i R it

bl
L] ) gL

s
i
W














































vl g
caid EXE] 2] i e

[k b= [l b T % (xR = T
Lk e 5 i Gl PR vl o B8
[k b= Il e T 2 [0 = T




Hamming

layer

WTA Winner Takes All

unipolar summing
neurons circuits

VVVY

pattern
retrieval layer

binary outputs



The conclusion:

The system of computational intelligence
can be smarter than humans

Is this new technological revolution?

150 years ago man power was replaced by machines (steam and
electric)

20 years ago significant portion of man brain functions were
replaced by computer (calculations, administrative functions, voice
and image recognitions etc)

We are still claiming that we are the most intelligent creatures in
the universe, but for how much longer?

Artificial Intelligence or True Intelligence
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Find clusters

Find number of clusters and its location in 4-dim. space
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Adding neurons as needed using

minimum distance concept
much simpler and more efficient then ART

1. First pattern is applied and the first neuron is introduced

2. Next pattern is applied and then:

a) If distance form all existing clusters is larger then threshold then a new
neuron is added

b) Else weights of the closest neuron are updated

W, = mW, +aX
m+1

where m is the number of previous patterns of a given set which were used to
update this particular neuron and a is the learning constant

28



Adding neurons as needed using

minimum distance concept
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Limitations of fuzzy systems

There are two major ways to design fuzzy controllers:
1. Mamdani

2. Tagagi, Sugeno and Kun (TSK)

NN
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Control surface obtained with fuzzy controllers
(a) required surface, (b) Mamdani controller with
trapezoidal membership functions, (c) TSK
controller with trapezoidal membership functions

Number of inputs limited to 3 or 4
30



Limitations of neural networks
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Control surfaces obtained with neural controller using (a) 3 neuron network, (b)
4 neuron network
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Comparison of fuzzy system and neural
networks

Rule selection cells
min-max operations
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Control surfaces obtained with Motorola
microcontroller HC11 using fuzzy approach
with trapezoidal membership functions (7
functions per input) and Tagagi-Sugeno
defuzzification
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Control surfaces obtained with Motorola
microcontroller HC11 using fuzzy approach
with six neurons 2-1-1-1-1-1 architecture
and Elliot activation function. 32



Various neural network architectures
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Layered bipolar neural  Parity-11 implemented in
network with one fully connected bipolar
hidden layer for the neural networks with five
parity-8 problem. neurons in the hidden layer.

Parity-15 implemented
with 4 neurons in one
cascade



Maximum N in a Parity-N

efficiencies of NN topologies
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“ Solution of the two spiral problem using
MLP architecture with 13 neurons (2-4-4-4-
1).
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Solution of the two spiral problem using
BMLP architecture with 7 neurons
(2=2=2=2=1).
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33 42 52 63 75 88 102 117 133 150 168 Weights

Training results of two-spiral problem

Neurons | Successrate | Average number of iterations Average time (s)
EBP | NBN EBP NBN EBP NBN
8 0% 13% Failing 287.7 Failing 0.88
9 0% 24% Failing 261.4 Failing 0.98
10 0% 40% Failing 2439 Failing 1.57
11 0% 69% Failing 231.8 Failing 1.62
12 63% | 80% 410,254 175.1 633.91 1.70
13 85% | 89% 335,531 159.7 620.30 2.09
14 92% | 92% 266,237 137.3 605.32 2.40

For EBP algorithm, learning constant is 0.005 (largest possible to avoid oscillation) and momentum is 0.5; maximum
iteration is 1,000,000 for EBP algorithm and 1,000 for LM algorithm; desired error=0.01; all neurons are in fully
connected cascade networks; there are 100 trials for each case.



Polynomial approximations
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Performance of Fuzzy Systems
and Neural Networks
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Control surface of TSK fuzzy controller (a) required control surface (b) 8*6=48
defuzzyfication rules



Performance of Fuzzy Systems
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Control surface of TSK fuzzy controller with equally spaced membership function 8 in
x-direction and 6 in y-direction (a) trapezoidal membership functions (b) triangular

membership



Performance of Neural Networks

Control surface obtained with neural networks (a) 3 neurons in cascade (12 weights)

0.21049 (b) 4 neurons in cascade (18 weights) Training

0.049061

Training Error

Error



What is wrong with Neural
Networks ?
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Control surface obtained with neural networks (a) 5 neurons in cascade (25
weights) Training Error=0.023973 (b) 8 neurons in cascade (52 weights)

Training Error=1.118e-005
EBP is not able to train optimal architectures
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Surface matching problem: (a) Required 2-D surface with 37x37=1,369 points, used
for verification; (b) 10x10=100 training patterns extracted in equal space from (a),

2
/)
i

i

¥

/ 00 '
:“ t“::

Other example

used for training.



NBN — 8 heurons
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The best training result in 100 trials, using LM algorithm, 8 neurons in FCC network
(52 weights); maximum training iteration is 1,000; SSE-,.,=0.0044, SSE, . .,=0.0080
and training time=0.37 s.

Train Verify



EBP — 8 neurons
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The best training result in 100 trials, using EBP algorithm, 8 neurons in FCC network (52
weights); maximum training iteration is 1,000,000; SSE,,,=0.0764, SSE, #=0.1271
and training time=579.98 s.

Verify



EBP - 13 neurons
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The best training result in 100 trials, using EBP algorithm, 13 neurons in FCC network
(117 weights); maximum training iteration is 1,000,000; SSE-,.;,=0.0018,
SSE,..+,=0.4909 and training time=635.72 s.

Train

Verify



Best neural network architectures

MLP 3-3-4-1 BMLP 3=3=4=1

Most software can train only MLP



Supervised learning rules for single

neuron
AW, =C 0 X
correlation rule (supervised): O =da
perceptron fixed rule: O=0d-0
perceptron adjustable rule - as above but the learning constant IS
— '—(%,l————
X)(
| X
LMS (Widrow-Hoff) rule: O =d —net
delta rule: O = (I — Oj '
™~
T T
pseudoinverse rule (the same as W = ‘( X/ X' d

LMS):
47



Levenberg-Marquardt Algorithm (LM)

Newton method: W, =W, — A[19

Assumptions: A~2]"] and (= ZJTe

where J is Jacobian and e is error vector

Gauss-Newton method:

Ty LT
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Levenberg - Marquardt method.:
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Levenberg-Marquardt Algorithm (LM)
Very powerful and very fast

Can train only MLP architectures so

optimal and most powerful architectures
cannot be trained

Size of Jacobian proportional to number
of patterns so only relatively small
problems can be solved



Neuron by Neuron Algorithm (NBN)
Very powerful and very fast

Can train any NN architectures so any architectures
can be trained (including most powerful ones)

Jacobian is not calculated and stored so problems with
basically unlimited number of patterns can be
effectively trained

Easy way of adding (or removing training patterns
without a necessity of retraining of entire set

Only forward pass in the contrast to most algorithms
where both forward and backward computations are
needed



| 1.0E+04

1.0E+03
| 1.0E+02
1.0E+01
1.0E-00
1.0E-01
1.0E-02

1.0E-03

1.0E-D4

‘Trainin i Information

Cur teration III
1]

Cur 55E

Ave |teration

Flothodes
@& Multi Curves
@ Cne Curve
@ Delayed Curve

Awe Time (ms) III
[ o ]
o ]

Total Times

Suce Rate

ExecutModes.

@ Auto Run

@ Save Data

Training Algarithm

[nEN 8|

[ LoadDataFile )

Command Consaler
Welcome to the neural nebwaork, warld!
Meuron by Meuron 2.08
-------------- Trairirg [Ffarmatior-s---------
Trainging algorithm: HBH
Combination caoefficient ru: 0.070000

b airiurn [ teration: B0
b a=iniun errar; 0.0710000

Trainini times: 100

| | (Crearcontent)

Parameter settin ¥}

Training Tirmes 100

Maximurm Error Q.o

Mazimum iteration

[ setParameters )
E' Start To Train ]
[ ClearPioting )

& Training Patterns
@ @ Testing Patterns

@ Create 2-D Patterns

deF )

)



O, n; [model] 3 1 2
X1 1 >— n> [model] 4 12
O ns [model] 5 3 4
X2 4 ny[model] 612435
©, > : ns[model] 7356
+1 +1 +1 +1

for all patterns (np)
% Forward computation
for all neurons (nn)
for all weights of the neuron (nx)
calculate net;
end,;
calculate neuron output;
calculate neuron slope;
end,;
for all outputs (no)
calculate error;

%Backward computation
initial delta as slope;
for all neurons starting from output neurons (nn)
for the weights connected to other neurons (ny)
multiply delta through weights
sum the backpropagated delta at proper nodes
end,;
multiply delta by slope (for hidden neurons);
end;
related Jacobian row computation;
end,;
end;
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Conclusions

Researchers are using wrong architectures:
_P instead of ACN

Researchers are using excessive number of

neurons

v'First order algorithm such as EBP is not able
to train optimal networks

v'Popular second order algorithm such as LM
can train only MLP networks

The newest version of NBN software can be downloaded from

http://www.eng.auburn.edu/~wilambm/nnt/



